

 1

The terms “gamma” and “gamma correction”
are well‐known to most graphics practitioners.
They describe a fundamentally simple but some‐
times confusing method used in print, imaging
and video technology, which also plays an impor‐
tant role in 3D computer graphics and composit‐
ing. Even though most have heard the terms be‐
fore, there are many misconceptions about
gamma correction, especially in the field of com‐
puter graphics (for example: “By calibrating my
monitor, I remove its gamma curve”). This article,
intended for any slightly technically inclined 3D
practitioner, tries to clear things up by giving
some background on what gamma correction is,
why it is needed, and what happens if you ignore
it. Additionally, the article explains why it is im‐
portant to use gamma correction in any image

processing and how to set up proper gamma
correction in 3ds Max as an example.

01. Basics
The main goal of gamma correction is to repro‐
duce brightness levels in a picture shown on an
output device in the same way as they were
originally observed (e.g., by a camera, scanner, or
also by the user on the screen).

The notion of a “gamma curve” was originally
introduced in video technology to characterize
the non‐linear relation between the video signal
voltage and the resulting brightness on a cath‐
ode ray tube monitor (CRT), caused by the prop‐
erties of the electron gun used in such a monitor.

Be gamma correct!
© 2009 Martin Breidt (http://scripts.breidt.net)
v 1.3 ‐ 17‐Jun‐09

Figure 1 – A 3D simulation of the well known Gretag Macbeth color checker with accurate rendering of color and brightness thanks to gamma correction

 2

Let I be the brightness and U be the image signal
on a normalized scale from 0‐1. Their relationship
on a CRT can be described by the power function

γkUI = with k being a constant describing the
maximum possible brightness (while neglecting
the minimum residual brightness, also called
“black level”). The exponent γ used here is
called the “gamma” of the monitor and normally
ranges between 2.3 and 2.6 for CRTs, but other
parts of the graphics pipeline can also influence
this value to produce a net effect of anything
between 1.5 and 2.5 (Figure 2 left).

0 Voltage U

Br
ig

ht
ne

ss
 I

1
0

k

0 1
0

1

Image signal V

O
ut

pu
t O

Figure 2 – Top: A typical gamma curve of a monitor (γ=2.2,
Black Level ignored). Bottom: The matching gamma correc‐
tion curve.

In order for the monitor to produce brightness
levels identical to what the camera saw initially,
the video signal has to be modified to compen‐
sate for the non‐linear response curve of the
monitor. Thus, the video signal is raised to the
power of γ

1 (Figure 2 right) such that the two

power functions eventually cancel each other out
and produce a linear brightness reproduction.
This intentional distortion of the image data to
compensate for a non‐linear display is called
“gamma correction”1.

1 Note that while the monitor’s ray gun behaves
nonlinearly when controlled by different voltages, the
light/photons emitted from the screen are of course
linear (in fact there is no such thing as nonlinear light).

02. Non‐linear perception
In order to produce accurate images for the hu‐
man eye, one has to take into account the effects
of human perception. While the precise details
are remarkably complicated and depend a lot on
the context, it turns out that humans perceive
changes in physical size in many domains (e.g.
brightness, volume, weight) differently depend‐
ing on where you start. In other words: we per‐
ceive relative changes, not absolute ones.
Roughly speaking this means that our perception
often uses a logarithmic scale. Hence, the bright‐
ness of stars is measured on a logarithmic scale,
as is audio volume (in decibel) or the density of
photographic film.

If, for example, we hold a weight in our hand,
then the smallest weight difference we can per‐
ceive depends on how big the original weight
was. With a small weight we will notice when
adding just a few grams; with a big weight, how‐
ever, we do not perceive the addition of the
same few grams at all. This principle is known as
Weber‐Fechner law and also applies to our
brightness perception2.

So, by lucky coincidence, the human eye reacts in
a quite similar non‐linear way to signals as a CRT
does (and quite differently than a light meter).
More on this later, but let’s take a closer look
first at human perception of brightness values.

03. Non‐linear encoding
The human eye, when adapted to the current
light situation, can normally perceive a dynamic
range of about 100:1 at once and is able to recog‐
nize brightness differences of about 1%. This
means, for example, that we will clearly see the
difference between two 10W and 11W light bulbs,
but we will not see the same difference between
light bulbs of 150W and 151W power. This relative
sensitivity is why it would be inefficient to save
the brightness values of a digital image with the
same linear accuracy across the entire dynamic
range: Stepping from 1 to 100 with a constant
step size of 0.01 will require 9900 steps and
therefore a binary precision of 149900log2 ≈ bit.
With that, there will be no visible banding in the
dark regions anymore, but at the same time the
bright areas would be unnecessarily detailed. But
if you use a non‐linear encoding based on a

2 As mentioned before, the actual details of human
brightness perception are a lot more complicated and
can be affected by surround brightness, eye adapta‐
tion, image frequency etc. The simplification we make
here is sufficient for practical purposes of observers
under normal viewing conditions.

 3

gamma curve, for example, you get higher preci‐
sion in the dark regions and less precision in the
bright regions while only using 9 bits in total. This
is fairly close to the usual 24 bit RGB images that
provide 8 bit per color channel. Therefore, all 8
bit images intended for human observation
should be saved in a non‐linear fashion – some‐
times also called “gamma coded” – to avoid visi‐
ble artifacts.

A quick comment on the actual pixel values: typi‐
cally, 8 bit values in a computer are stored in a
Byte, ranging from values 0 to 255, with 0 being
the darkest black and 255 being the brightest
white3 that can be handled by the device. When
looking at luminance in floating point precision,
most people treat the same dynamic range (pre‐
viously stored as 0…255) as values 0.0 to 1.0, and
any value above 1.0 as “superbrights”.

04. Not a bug, a feature
So why is it a lucky coincidence that a CRT and
our eye both deal with the image signal in a very
similar, non‐linear way? Because a compact,
gamma‐coded 8‐bit image will then be trans‐
formed back simply by displaying it on a monitor
and thus produce correct, linear brightness val‐
ues as originally observed by the camera without
the need for any additional computations.

In addition, the gamma curve of the monitor will
work nicely with the brightness perception curve
of the human eye: a simple linear gradient be‐
tween 0…255 without gamma correction will
produce a downwards bent intensity profile on
the monitor (when measured with a light meter)
but this in turn is perceived as a linear increase in
brightness by the eye, as intended. In other
words: equal steps in framebuffer pixel values (or
signal voltage) will produce equal steps in per‐
ceived brightness thanks to the monitor gamma
curve.

So gamma is indeed a desired feature that allows
minimizing noise and banding when using a re‐
duced data bandwidth. It is not an artifact that
needs to be removed but is an effect matching
the human eye.

Directly displaying linear image data on a monitor
that has a gamma curve will lead to noticeably
darkened midtones. Accidentally applying
gamma correction twice will result in midtones
which are much too bright.

3 In reality, color is coded as red, green and blue values,
but in this article, we only discuss greyscale images for
simplicity. The concepts can be directly transferred to
color images, though.

Sometimes the gamma correction embedded in
the image data and the gamma curve of the
monitor do not cancel out each other com‐
pletely, leading to an increase in image contrast ‐
an effect that can be desired in order to prepare
image material for viewing in dim surroundings,
typical for TV or cinema viewers.

05. Flat screens
While the brightness response of CRTs can be
well described by a gamma curve, the behavior of
flat screens (LCD, TFT) is fundamentally different
and often highly non‐linear. Luckily, most flat
screens contain special circuitry to simulate a
gamma curve similar to CRTs. Therefore, for
practical purposes a gamma correction can be
performed for these monitor types, too.

06. The problem, part one
But let’s return to our digital images that use 8
bits per color channel to encode red, green and
blue intensities. These images are used by many
on a daily basis for texturing 3D objects, as layers
in Photoshop, or as medium to store 3D render‐
ings. As described before, these images should
be using a non‐linear encoding in order to pro‐
duce an optimal result for the human eye.

The problem arises when feeding this (non‐
linear) image data directly to algorithms that
strictly assume that brightness is encoded line‐
arly. This assumption is made in almost any piece
of graphics software since linear illumination
formulas are faster to develop and to compute.
Unfortunately, it is often ignored that the image
data is already stored on disk non‐linearly since
the image format only uses 8 bit per color chan‐
nel.

07. The problem, part two
Even without using external image data, it is of‐
ten forgotten when computing image values that
the brightness values on screen do not depend
linearly on the pure RGB pixel values, thanks to
the screen gamma curve. Therefore, even the
most simplistic addition or multiplication of RGB
values can produce incorrect results on screen.

Here is a simple example to illustrate this: Let’s
assume that a white image (RGB values =
255/255/255) produces a maximum brightness of
1.0 units on screen. Now the image is to be dark‐
ened down by half. If you now simply half all
pixel values and send them as 128/128/128 to the
screen, the screen’s gamma curve will render this
into a effective brightness of (128/255)2,2 = 0.22
units! In reverse, this also means that a naïve
doubling of RGB value 128/128/128 will increase

 4

the brightness from 0.22 to 1.0. Suddenly, our
math is 0.22 * 2 = 1.0.

0 0.50.5
Input

O
ut

pu
t

0.73 1
0

0.5

0.22

1

Figure 3 – Gamma curve for γ=2.2, closely matching the sRGB
standard. An input value of 0.5 (pixel value=128) produces an
output value (brightness) of only 0.22. Conversely, an output
value of 0.5 requires an input value of 0.73 (=186)

In other words: The software treats image data
as “50% brightness” which in reality only pro‐
duces 22% brightness. The correct value for half
maximum brightness would have been
186/186/186 (Figure 3).

This drastic mistake also occurs, if you do not
correct for gamma and…

• …compute transparent objects,

• …compute anti‐aliasing or motion blur,

• …mix RGB textures with physically cor‐
rect lighting (Global Illumination),

• …add up the brightness contributions of
multiple light sources,

• …scale and filter textures (e.g. for mip
mapping),

• …blur images.

Figure 4 – Simple motion blur example using a black and
white texture on a rotating box. Top: too dark without
gamma correction. Bottom: With gamma correction.

Figure 5 – A spot light illuminates a ground plane with quad‐
ratic falloff. Top: Without gamma correction, we get a too
strong falloff and overexposed hotspot. Bottom: Proper
result with gamma correction

 5

08. Any questions?
At this point the question might arise how it is
possible that such dramatic errors are made but
we all have had good results for years without
gamma correction? There are several reasons for
this: First, we have all learned to work around the
incorrect results, by adding more fill lights, or by
brightening up downsized images, for example.
Secondly, many algorithms (e.g. lens flares) have
special code to compensate for problems that
originally arise due to missing gamma correction,
in order to produce “pretty” results. These re‐
sults have no physical basis anymore and have
nothing to do with realistic behavior of light. And
finally, we all have learned to accept certain arti‐
facts caused by lack of gamma correction, for
example when computing anti‐aliasing and hav‐
ing to increase sampling rates while the actual
problem is too dark intermediate pixel values
caused by gamma ignorance.

For those that still doubt the 0.22 * 2 = 1.0 state‐
ment: you can simply use the light meter built
into your camera to measure for yourself that a
grey level value of 128 will only produce 22% of
the maximum brightness on screen if no gamma
correction occurs: For this, you should simply put
your camera to the highest ISO sensitivity set‐
ting, point your camera at your screen and read
out the exposure values for the grey levels 255
and 128 respectively. Half the brightness should
lead to twice the exposure time in your camera –
but for grey level 128 your camera will report a
quadrupled time, indicating that the actual
brightness is approximately 25%.

Gamma correction always has to be applied
when the display device behaves non‐linearly or
when the input data is stored non‐linearly and

needs to be processed. This is the case for im‐
ages taken with a still camera, for example. The
RAW format of most digital cameras is initially
storing linear values but as soon as it is converted
to JPEG or TIFF, a non‐linearity is introduced that
needs to be corrected before using the data for
calculations. Also data from scanners and video
cameras is stored non‐linearly most of the time
and has to be gamma corrected.

09. sRGB
So how can we determine what kind of non‐
linearity is contained in our images and output
devices?

Several companies sell special measuring devices
which can profile and/or calibrate screens, pro‐
jectors, printers or cameras. Spyder from Data‐
color, EyeOne from x‐rite or huey from Pantone
are some examples. These devices measure the
exact properties of the imaging hard‐ and soft‐
ware and store the results in a standardized form
as color profile to ensure consistent color render‐
ing on multiple output devices. Sometimes, cor‐
rection tables can be generated additionally mak‐
ing sure that the measured device is meeting ex‐
act standards.

Alternatively there is a multitude of image plates
and tools available on the Internet designed to
allow determining a display gamma value by sim‐
ply looking at intersecting grayscale gradients.
Most of the time, these tools take advantage of
the fact that a fine pattern of black and white
pixels is supposed to look exactly like a 50% gray
value in combination with the right gamma value.
Adobe Gamma is one of the tools using this tech‐
nique, as is 3ds Max (Figure 7).

Figure 6 – The complete gamma/correction pipeline, starting with the texture acquisition using a camera (left) up to the display of a
3D rendering on the screen (right) with intermediate storage as 8 bit image file (center). In order to be able to correctly calculate
within the 3D software, the image data has to be linearized initially (using the Input Gamma) and to be stored non‐linearly at the end
(applying Display/Output Gamma). Finally, the correct light intensities are produced on the screen due to the intrinsic gamma curve of
the hardware (Monitor Gamma), which then are perceived non‐linearly by our eye, just as the original intensities would be.

Camera
Gamma

Input
Gamma

Rendering
Filtering,

Anti‐Aliasing,
Blending,

...

Display
Gamma

Monitor
Gamma

Adapted
Human Eye

8 bit RGB
texture

3ds Max

Physical
Light Intensity

Physical
Light Intensity

Human
Perception

8 bit RGB
Frame Buffer

8 bit RGB
file

16/32 Bit
linear RGB

16/32 bit
linear RGB

Output
Gamma

 6

Figure 7 – Visual estimation of gamma by comparing a black
and white pattern next to a patch of gray, in 3ds Max (left)
and Adobe Gamma (right)

Typically, these estimates can vary easily by +/‐
0,2 units for the gamma value4, so nowadays,
with a modern flatscreen, you might do just as
well by simply assuming a gamma of 2.2. This
value is derived from the so called sRGB color
space which has become a very widely used
standard for color rendering. If you do not have
the highest demands for color reproduction ac‐
curacy you should be well served with this as‐
sumption since most screens and cameras have
at least a sRGB preset5. More precisely, sRGB
does not use a single gamma curve but replaces
the lowest part of a gamma=2.2 curve with a
straight line, but gamma=2.2 is a pretty good ap‐
proximation in most cases.

Unfortunately, the situation for image files prop‐
erties is a more complicated. Some image for‐
mats (e.g. JPEG, PNG, PSD, TIFF) allow metadata
for saving information about which color space
(and therefore using which gamma) the pixel
values should be interpreted in. For other for‐
mats, or when metadata is missing, a rule of
thumb is: if the image looks “good” on a moni‐
tor, the gamma of the image matches that of the
monitor (which is often sRGB). An exception to
that rule is images that were not made to be
viewed directly but encode special object proper‐
ties, such as surface normals, displacement
height, or other general influence maps. This
data is normally computed without gamma and
therefore should not be corrected. The same ap‐
plies to HDR images that normally should be

4 Also, a one‐pixel checker pattern can produce display
artifacts due to interference of neighboring pixels and
thus distort the gamma estimate.
5 Within the print design community, sRGB does not
have a very good reputation due to it’s limited color
gamut and it’s intended use in RGB display devices,
which makes it only second choice for images de‐
signed to be printed based on CMYK color separation.
Many prefer the Adobe RGB color space, which also
uses a gamma of 2.2.

saved without gamma. Hand‐painted textures,
on the other hand, that were judged by an artist
on his/her screen should be saved in that screen’s
color space and gamma.

Here is a warning in case someone might now
have the idea to generally pass all 8 bit images
through a gamma correction and then save them
as linear data for later use. As explained before, 8
bits are not enough to encode an image without
visible artifacts.

And for those who might want to know if a par‐
ticular piece of software is handling gamma cor‐
rectly, they can simply have the software scale
down an image consisting of alternating one‐
pixel lines of black and white color down to 50%.
If you observe the reduced result and the original
image from some distance such that you cannot
see the individual lines in the original any more
(squinting might help), both should appear of
equal brightness if gamma correction is per‐
formed. Alternatively, you can output a 50% pixel
value and use your camera light meter as de‐
scribed in section 08 to measure whether this
really produces 50% luminance.

10. Hands on
Using 3ds Max 20096 as a case study, we now will
explain in detail what needs to be done to estab‐
lish a correct gamma workflow in practice. Simi‐
lar procedures exist in other 3D packages, but
might require the use of individual shaders to
perform the gamma correction.

3ds Max has the ability to perform a general
gamma correction when loading textures, dis‐
playing images on screen as well as when saving
images. For this, you open the tab Gamma and
LUT in the Preferences dialog and select the fol‐
lowing settings for the normal case of an sRGB
workflow (Figure 8):

Enable Gamma/LUT Correction = on
Display > Gamma, value = 2.2
Affect Color Selectors = on
Affect Material Editor = on
Input Gamma = 2.2
Output Gamma = 2.2

6 Changes introduced with 3ds Max 2010 are added as
comments to each section

 7

Figure 8 – The Gamma parameters in 3ds Max with the rec‐
ommended settings for an sRGB workflow

It is recommended to activate the option Load
Enabled State with MAX Files to ensure that the
gamma correction parameters will be used later
on when opening the scene file on some other
system. Unfortunately, this also needs to be set
manually for each machine participating in Back‐
burner network rendering. 3ds Max 2010 has
changed both behaviors by asking in the Gamma
and LUT Settings Mismatch Dialog what to do
when it encounters differences in gamma be‐
tween the loaded file and the default 3ds Max
settings.

The parameters Input and Output Gamma deter‐
mine that a gamma of 2.2 will be used by default
when opening image files. This value can be
changed later on for each image file separately
while opening the file in the Bitmap File Dialog.
There you can select whether the gamma value
saved in the header of the image file should be
used (Use image’s own gamma), whether the de‐
fault value from the preferences should be used
(Use system default gamma), or whether a spe‐
cific value just for this file should be used instead
(Override). For bump, normal or displacement
maps, the latter option with a value of 1.0 should
be used, as these image files are pure data chan‐
nels and should not be gamma corrected.

In principle, all settings are now made for proper
gamma correction in 3ds Max. Now, a grey value
of 128 from the 3ds Max color picker will indeed
produce 50% brightness on screen.

Unfortunately, there are still some small glitches
in 3ds Max when dealing with gamma: The pre‐
view thumbnails in the File Open dialog will ig‐
nore the gamma settings, and so does the Expo‐
sure Control preview image. (Note: 3ds Max 2010
fixes both). Prior to 3ds Max 2010, you have to
restart 3ds Max after changing gamma parame‐

ters (or at least select File > Reset). And some
parts of the software still do not work well with
gamma correction, such as lens flares, the mental
ray Glare shader or the Gradient map (which can
be corrected using Output Curves).

In the best tradition, a simple teapot wireframe
model will serve as our first test object: In a first
step, render the image without gamma correc‐
tion and save it. Then enable gamma correction,
save the scene temporarily using Edit > Hold, re‐
start 3ds Max using File > Reset, and finally re‐
load the saved scene file using Edit > Fetch, now
with gamma correction enabled. (Note: for 3ds
Max 2010, you simply enable gamma and con‐
tinue). Now render the same image once more
(with otherwise identical render settings), save it
and compare it to the first version. You will no‐
tice a dramatic difference between the two
thanks to the error made when rendering anti‐
aliasing without gamma correction (Figure 9).
Similar differences can be observed in anti‐
aliasing/filtering of textures close to the horizon,
or with motion blur effects (Figure 4).

Figure 9 – A wireframe rendering, top without gamma correc‐
tion and bad anti‐aliasing, bottom with identical render set‐
tings but proper gamma correction and much better results

Note that in most cases it will not work to simply
activate gamma correction for old scene files and
re‐render since these scenes were optimized to
produce pretty pictures despite using wrong
math. In order to preserve all the colors used in
old scenes after activating gamma correction, all

 8

RGB values need to be converted according to
this formula: 2.2)255/(255 oldnew ⋅= , otherwise
you will get washed out colors. Also, light levels,
bounce lights, amount of reflections etc. might
need to be adjusted.

When working with Global Illumination or other
physically correct light sources, proper gamma
correction is absolutely mandatory. One the one
hand for linearizing 8‐bit image data and thus
making it compatible to the physically correct
algorithms used, one the other hand for prepar‐
ing the linear image data computed by the render
for an accurate display on screen. Gamma correc‐
tion is so important in this case that 3ds Max will
automatically do a gamma correction in the mr
Photographic Exposure Control if it has not been
activated in the preferences yet.

Figure 10 – Example for the influence of gamma correction on
global illumination rendering. Top: without, bottom: with
gamma correction. Light intensity for the top image was
adjusted so the overall brightness of the rear wall roughly
matches the one in the bottom image.

11. Floating Point Color and HDR
The problem of errors due to missing gamma
correction is largely moot as soon as all steps are
performed with floating point precision. Then all
image data can be saved and processed directly
as linear color without further transformations.
This is especially useful when employing global
illumination models and High Dynamic Range
(HDR) images and the results need to postproc‐

essed in compositing. This approach has recently
become popular under the name “Linear Work‐
flow”. In particular, the OpenEXR file format de‐
veloped and freely released by ILM is often used
in this workflow as it allows very efficient storage
of floating point data.

Only when displaying images on screen and when
using “classic” 8‐bit low dynamic range textures
you still need to perform gamma correction, but
not when saving images to floating point format.

12. Data channels
Some image formats allow storage of additional
pixel data besides RGB color. Similar to the situa‐
tion where you store computational data in the
RGB channels, this is a special situation that
needs to be considered when performing gamma
correction on image files. Typical examples for
additional image data are alpha channel, matte
pass, depth buffer, bump map, normal map, dis‐
placement map etc.

Data channels are typically not made to be di‐
rectly shown to a human but serve as input for
some algorithm, and therefore do not have to
deal with the nonlinearities of a display or the
human eye. Subsequently, this type of data
should not be gamma‐encoded, but saved and
loaded as linear data, much like HDR images.
Special care needs to be taken when manually
painting such data channels (e.g bump maps) in
image editors such as Photoshop.

The alpha channel is a special case, since it di‐
rectly encodes the transparency of an object and
therefore is affected by the non‐linear sensitivity
of the human eye. Therefore, alpha should be
gamma‐encoded when saving to 8 bit.

In general it is important to understand how the
individual software packages encode their data
and to make sure that any non‐linearity is undone
before data is processed by the renderer.

13. Et tu, Brute?
It should be mentioned at this point that even in
2009, only a few image processing software
packages are handling gamma correctly. Photo‐
shop, for example, the work horse of most visual
media productions, is still ignoring gamma when
scaling down images or blending layers7. Re‐

7 A very simple test to illustrate this: Create a 2*2 pixel
checker pattern using pure black and white, then fill
the entire image with that pattern. Now scale it down
to 50% size (which should produce a 1:1 mix of black
and white, resulting in 50% brightness), and up again
by 200% to get the original image size – the image will
now be much darker. Do the same steps, but now in

 9

cently, Photoshop has received a preference op‐
tion Blend RGB colors using gamma=1.0 which
fixes the error when blending layers but scaling
images is still broken8. In contrast, film composit‐
ing software such as Nuke or Digital Fusion allow
you to assign color spaces to images and appro‐
priately apply gamma correction before running
any image operations.

It is interesting to note that recent versions of
OpenGL and DirectX added support for a gamma‐
enabled workflow (by supporting gamma‐
encoded sRGB textures and performing lineariza‐
tion in realtime), and a range of current game
and engine developers (e.g. Half Life 2) have im‐
plemented this.

14. Final words
Gamma correction is a rather simple tool in the
quest of correct reproduction of images on dif‐
ferent systems, summarizing the system charac‐
teristics with a single exponential transfer curve9.
It would be better to properly handle the entire
color space in which images are recorded and
displayed. While this is a standard technique in
print (and also often in compositing) it is largely
unsupported in 3D computer graphics, even if,
for example, mental ray provides support for
color profiles since version 3.4. Hopefully this will
change in the future with increased demand for
correct color management.

I hope I was able to show that gamma correction
is a simple but important step in all areas of im‐
age processing and in particular for 3D computer
graphics. The correct application of gamma
curves allows the reduction of a whole range of
well‐known image artifacts with a few simple
steps and will, if used consistently, lead to better
looking imagery. Of course gamma correction is
no silver bullet, but ignoring it causes a whole
range of unnecessary problems that are easily
avoidable.

32Bits/channel color mode to see this being done cor‐
rectly; also note the actual pixel values in both cases.
8 Other examples of software not using gamma cor‐
rection when scaling images are Gimp, XnView, Mat‐
lab, Word, Firefox
9 Typically, three separate gamma curves for red,
green, and blue are used but nevertheless this is an
oversimplification of actual display characteristics;
gamma lookup tables improve on this but still lack the
accurate representation of color.

15. Take Home Message
Here are some (slightly oversimplified) facts
about gamma that basically capture the entire
story:

1. 3D rendering and most other image
processing algorithms assume linear
light encoding, meaning that a pixel
value of 128 encodes half the maximum
brightness.

2. 8 bit is not enough to encode images
without artifacts, so you need to use
gamma encoding; which means any 8 bit
texture/photo/drawing (from cameras,
scanners, or from painting on screen)
needs to be linearized before feeding it
into a graphics algorithm; also when sav‐
ing the final output of such an algorithm
in 8 bit, you need to apply gamma.

3. A computer screen has a gamma curve,
so linear data needs to be corrected be‐
fore displaying it on screen in order for it
to produce correct luminance levels.

4. sRGB is the most commonly used color
space for image recording and display
devices, and it has a transfer curve very
similar to gamma=2.2.

16. Further reading
http://www.poynton.com/notes/colour_and_gam
ma/GammaFAQ.html
Charles Poynton, specialist for digital color imag‐
ing systems, has some excellent and very de‐
tailed information on gamma correction and
color reproduction.
http://www.4p8.com/eric.brasseur/gamma.html
This interesting web site has several nice test
images that dramatically show how almost any
image processing software is completely ignoring
gamma correction when scaling images.

http://www.teamten.com/lawrence/graphics/ga
mma/
This web page by Lawrence Kesteloot, a former
employee of PDI, describes what is wrong with
processing images without gamma correction.

http://mysite.verizon.net/spitzak/conversion/com
posite.html
Bill Spitzak of Digital Domain shows a range of
nice, interactive examples on why it is important
to use linear floating point precision for compo‐
siting and 3D, with gamma correction as a neces‐
sary part of that.

http://mymentalray.com/wiki/index.php/Gamma
Entry in the mental ray Wiki on the topic of
gamma with practical tips and explanations.

 10

17. Additional comments
This section contains some late comments and
other information related to gamma correction
that did not fit into the general article flow:

‐ Some HDR images available on the web
have gamma applied

‐ Some users argue that using a default
input gamma of 1.0 in 3ds Max makes for
a better workflow as this ensures that all
non‐color image data (bump, normal
maps etc.) are loaded correctly. Uncor‐
rected color images are typically easy to
spot and can be adjusted using the 3ds
Max tools.

18. Acknowledgements
Håkan “Zap” Anderson of mental images pro‐
vided the foundation for much of the information
contained in this article and never got tired of
reiterating why gamma correction is important.

Thanks to David Baker, for his useful comments
and corrections, as well as to Gavin Greenwalt
and Joep van der Steen for their comments.

