
Let’s Get Small
Understanding MIP Mapping

Kevin Bjorke, NVIDIA
June 2005

©2005 NVIDIA Corporation. All rights reserved.

Understanding MIPs and Texturing

What they are
How they work
How to use them
How to abuse them
How they affect different kinds of maps
Bump maps, Normal maps, Color Maps
Workflow & making your own MIP maps
More!

©2005 NVIDIA Corporation. All rights reserved.

What are MIP maps?

MIP mapping
is a graphics
method where
multiple-sized
copies of
texture maps
are combined
at render time
to create the
final textured
image

Original
Texture MIP

levels

©2005 NVIDIA Corporation. All rights reserved.

Why Artists Should Care About MIPs

Quality
Controlling the MIP map means giving the artist
control over the full range of model appearance

Performance
Savvy use of MIP maps gives games the highest
texturing performance

Avoid Wasting Artist’s Time
Don’t waste time painting details that will never be
seen! Understanding MIPs lets you stay focused on
what’s visually important

©2005 NVIDIA Corporation. All rights reserved.

Texture Mapping Basics

Texture mapping
coordinates are assigned
in 3D per-vertex, but maps
actually get applied in 2D
Each rasterized triangle
will have a specific range
of texture derivatives –
that is, the amount of
texture image that will be
used for that pixel

“MRT” visualization
of texture coordinates

©2005 NVIDIA Corporation. All rights reserved.

Mapping a 2D texture to a triangle

For each area of
a surface, there is
a single triangle
in 3D space,
mapped onto
screen 2D space,
and also mapped
into 2D texture
space

©2005 NVIDIA Corporation. All rights reserved.

Mapping a 2D texture to a triangle

Each 3D triangle
is also a 2D
triangle on-screen

©2005 NVIDIA Corporation. All rights reserved.

Source Map

Each screen
triangle maps to
some triangular
area on the texture
map
This area may be
rotated, stretched,
and/or squeezed,
but it’s still a
triangle

©2005 NVIDIA Corporation. All rights reserved.

We can look at the UVs directly

Here shown as
colors (red/green)
We can see areas
on-screen of faster
or slower gradation
in the color
The gradation
speed is the
derivative

©2005 NVIDIA Corporation. All rights reserved.

Looking directly at the UV derivatives

UV Derivatives are
how much the UVs
change per pixel
We can also think of
them as “the
amount of texture
stretching”

Math trivia: we only
get first-order derivs,
second-order is
always zero. See
the faceting?

©2005 NVIDIA Corporation. All rights reserved.

Texture Filtering

Stretching and
squeezing of
texture triangles is
“image filtering”
The hardware can
do simple “linear”
filtering between
texels

©2005 NVIDIA Corporation. All rights reserved.

GPU Texture Caching

GPUs are designed to minimize texture latency – that is,
the amount of time between a shader makes a texture
request and the time the shader receives a usable color
Shader units run faster than memory, so a key strategy
is caching, based on “best guesses” of access patterns
When the guess is wrong, performance suffers

“Real” Texture Memory
Texture Cache

Memory
Pixel Shader

©2005 NVIDIA Corporation. All rights reserved.

MIP Maps

MIP maps provide pre-filtered
values for texture compression and
good caching
The tradeoffs are performance &
control versus texture memory
A MIP’d texture occupies twice the
total texture memory…
…but may occupy far less active
cache! So overall perf is better

Only the MIP levels being actively
used will be in the cache

©2005 NVIDIA Corporation. All rights reserved.

MIP Level Creation

MIP levels (or just “MIPs”) can be
automatically created in the driver
at texture-load time – or better,
explicitly-defined in the texture file
File MIP levels can be created
automatically, or tweaked by hand
DDS is the most common MIP-able
file format in games, though others
(e.g., multi-resolution TIFF) do
exist

©2005 NVIDIA Corporation. All rights reserved.

MIP bias

“MIP bias” is a way to force the GPU to use a
different MIP level than the one automatically
chosen by DirectX
Positive bias pushes to lower (smaller) MIP
levels, negative to higher
Negative bias may look sharper in a still frame –
but it will alias and sparkle when in motion!
Worse, it makes poor use of the texture cache,
resulting in degraded performance
Don’t mistake aliasing for detail

©2005 NVIDIA Corporation. All rights reserved.

Render-Time Filter Methods

Aniso, trilinear, bilinear…
Artists can’t control these
There are performance and quality issues that
ultimately should be balanced by the game
programmers at run time
And the final user may over-ride the
programmers’ settings anyway!
In general: trilinear will go twice as slow as
linear, and both are faster than aniso

©2005 NVIDIA Corporation. All rights reserved.

NVIDIA DDS Conversion Tool

http://developer.nvidia.com/object/dds_utilities.h
tml

tool improves regularly, so be sure you have an up-
to-date version

RULE #1: ALWAYS SAVE THE .PSD, WITH
LAYERS

You never know what shaders might come along
later – you might need to re-arrange the channels,
add specular maps, who knows?
You might need the .psd’s to build atlases or other
formats later, too.

http://developer.nvidia.com/object/dds_utilities.html
http://developer.nvidia.com/object/dds_utilities.html

©2005 NVIDIA Corporation. All rights reserved.

Making Automatic MIPs in Photoshop

NVIDIA DDS Plug-in can export to DDS & build MIPs
http://developer.nvidia.com/object/photoshop_dds_plugins.html
“Save as…” then select file format: DDS
After choosing a filename, this dialog appears:

http://developer.nvidia.com/object/photoshop_dds_plugins.html

©2005 NVIDIA Corporation. All rights reserved.

Creating MIP Maps in Photoshop

For MIP generation, these controls are key:

©2005 NVIDIA Corporation. All rights reserved.

MIP Map Filtering…

Select Filter and Size

©2005 NVIDIA Corporation. All rights reserved.

Many Choices for Filtering

Each provides a different character in terms of
sharpening and smoothness
But which one to choose?

©2005 NVIDIA Corporation. All rights reserved.

Favored Filter Types

Each filter has its own character, which is why
there are choices. The most-common choices
are:

Point – “Nearest Neighbor” – that is, no filtering
Box – Simplest, naïve and fastest
Cubic – Like Photoshop’s own “bicubic”
Mitchell – good balance of quality/speed
Kaiser – slowest (?)

“Kaiser Gamma” currently unimplemented

Each gives a different pattern of
weights to neighboring pixels

©2005 NVIDIA Corporation. All rights reserved.

Sharpening Filters

An alternative to
MIP Filters, or
can be used in
tandem
Sharpening can
help preserve
“valuable”
details, esp.
edges (more on
this idea later)

©2005 NVIDIA Corporation. All rights reserved.

Image Options…

Dithered color can give
greater apparent color
range to lower MIP levels

©2005 NVIDIA Corporation. All rights reserved.

Fading MIP maps…

Fade to gray for Normal Maps
For color, consider the likely
background colors
“Poor Man’s
Fresnel” – give
objects a halo
by picking a
bright color

©2005 NVIDIA Corporation. All rights reserved.

Advanced Fading Options

At the extreme, specific levels can get exact
fading for effect

©2005 NVIDIA Corporation. All rights reserved.

3D Texture Preview

Great Feature
– can see
results of all
MIP and
format
choices
Use 3 mouse
buttons for
three types of
motion

©2005 NVIDIA Corporation. All rights reserved.

3D Preview Features

Draw against real backgrounds etc

©2005 NVIDIA Corporation. All rights reserved.

Preview Options

Preview only
the formats
you’re likely
to actually
use,
potentially
against a
specific
background
color or
image

©2005 NVIDIA Corporation. All rights reserved.

Formats: DXT Compression Schemes

DXT1-DXT5 all represent the same data
DXT1 compresses 8::1 – no alpha or with single transparent color
DXT3 & DXT5 compress 4::1 and have alpha
DXT1 can exist compressed even in GPU cache, providing the best
performance

EXPLICIT
ALPHA

INTERPOLATED
ALPHA

Premultiplied
RGB DXT2 DXT4

Unpremultiplied
RGB DXT3 DXT5

©2005 NVIDIA Corporation. All rights reserved.

Special Bit Depth Choices

4:4:4:4, 5:5:5:1, 5:6:5 – worth the trouble?
For “straight” color maps, few games (that we knew offhand)
using 4:4:4:4, or 5:5:5:1, or 5:6:5 formats
But these formats were being used to pack low-precision maps
together for “live” recombining in shaders for terrain, sets, etc

FP16x4 – same as “half” in HLSL and the type used by
OpenEXR (http://www.openexr.org) format used at ILM
et al. Blendable and filterable on GeForce 6+
FP32x1, FP32x4 – IEEE 32-bit floating point. Required
by GeForce 6 for Vertex Texture Fetch (VTF) – that is,
texture access in vertex shaders for effects like true
displacement mapping & dynamic terrain generation.

http://www.openexr.org/

©2005 NVIDIA Corporation. All rights reserved.

Convert/Export Normal Map

Preferred over
using the dedicated
Photoshop image
filter… often a valid
choice! (details
later)
Hint: use good
sharpening with this

©2005 NVIDIA Corporation. All rights reserved.

Plugin Config

These UI Choices Don’t
Affect Image Quality

©2005 NVIDIA Corporation. All rights reserved.

Hand-Tweaking MIP Levels

Sometimes automatic filtering isn’t as good as
hand-tweaking individual levels
Texture painting for specific MIP-levels can
accentuate the features that are most important
– e.g., important symbolic elements like Flags,
Eyes, Numbers & Letters, etc.
Workflow is simplified by using the NVIDIA
“Mipster.js” Photoshop script (for PC or Mac)

©2005 NVIDIA Corporation. All rights reserved.

Stage Makeup as “MIP LOD”

Stage makeup has to look
good from 20 meters+
It doesn’t have to look
good up close!
Close-up makeup is for
TV, photography, and
everyday life
Stage makeup can
accentuate symbolically in
place of scientific realism,
either overtly or subtly O
nn

ag
at

a
ac

to
r –

m
ak

eu
p

is
 “s

ym
bo

llic
al

ly
”

fe
m

al
e

19th Century Stage
Makeup Manual

©2005 NVIDIA Corporation. All rights reserved.

“Mipping” in the Physical World

Stage makeup looks un-natural at “normal”
distances, but reads very well when scaled-
down (seen from a distance)
Accentuates the key expressive elements and
geometry of the face

Makeup example courtesy
Tara Maginnis,
http://www.costumes.org

©2005 NVIDIA Corporation. All rights reserved.

Using “Mipster” to Create MIPs

Mipster is a Javascript workflow
tool – install under the PS
“File→Scripts” menu
Mipster uses Photoshop image-
resize to make MIP levels
Makes a copy of your original, so
it’s completely non-destructive
Handles texture repeat in U, V,
or both directions
Each MIP gets its own
Photoshop layer, to make it
easier to edit/sharpen/tweak
visually in Photoshop.

©2005 NVIDIA Corporation. All rights reserved.

Saving Hand-Tweaked MIP Maps

Select “Use Existing MIPs”
All other MIP controls are ignored
MIP arrangement will be figured out automatically, based on image
dimensions

©2005 NVIDIA Corporation. All rights reserved.

Rectangular Texture Atlases

Creation and Viewer tools on
http://developer.nvidia.com/
object/texture_atlas_tools.html
Technique intended to simplify
DirectX batching
Another reason to save the
.PSD – textures you paint
today may be combined into
an atlas by someone else, later

http://developer.nvidia.com/�object/texture_atlas_tools.html
http://developer.nvidia.com/�object/texture_atlas_tools.html

©2005 NVIDIA Corporation. All rights reserved.

Irregular Texture Atlases

Careful of bg
colors – in this
example the
background is
colored similar to
the pieces, so that
obvious problem
colors won’t be
introduced by MIP
mapping

©2005 NVIDIA Corporation. All rights reserved.

Automated Irregular Charts

Automated charts
like those from
some UV
generators may
need to be point-
sampled
(There never
seems to be a
single perfect
solution!)

©2005 NVIDIA Corporation. All rights reserved.

Melody and MIP maps

MELODY can
generate normal
maps and assign
texture
coordinates
while simplifying
http://developer.
nvidia.com/object/
melody_home.html

http://developer.nvidia.com/object/melody_home.html
http://developer.nvidia.com/object/melody_home.html
http://developer.nvidia.com/object/melody_home.html

©2005 NVIDIA Corporation. All rights reserved.

Charts are not MIP’d

So try to use regular decal
coordinates, if they are
valid & monotonic (i.e., no
folding or overlapped UVs)

©2005 NVIDIA Corporation. All rights reserved.

If Working Model is Monotonic….

Then we will be in good
mip-able shape

Decal
UVs

Generated
Normal
Map

©2005 NVIDIA Corporation. All rights reserved.

Making a chart atlas more mippable

One decidedly
un-scientific
method!
Use PS layers,
duplicate the
charts and use
“smudge” and
“gaussian blur”
on the under-
copies, against a
gray BG

©2005 NVIDIA Corporation. All rights reserved.

Hand-Painting Normal Maps

One advantage of normal maps over bump
maps – you can make large areas of continuing
gradation (while a height field can only increase
for a while before it has to go down again)
You can tweak areas of high contrast (filter
them) or low contrast (touch-up with a brush, or
sharpen)
When using Photoshop, I
use a texture like this as a
dropper-tool palette:

©2005 NVIDIA Corporation. All rights reserved.

Hand-Painting in FX Composer

While crude, painting
in FX Composer can
let you see the direct
3D results in real time
Plus, it can set the
color automatically via
“gesture direction” (if
only Photoshop had
this…)

©2005 NVIDIA Corporation. All rights reserved.

Why Normal Mapping Doesn’t Work

Well, yes, it actually does, but only up to a point!
One of the shortcomings in bump/normal
mapping is that filtering is done in the wrong
part of the imaging pipeline for specular
calculations
Texture filtering is designed to deliver a high-
quality, filtered color sample
But when we bump/normal map, we are using
that value as an input to another function – the
lighting equation

©2005 NVIDIA Corporation. All rights reserved.

Equation Alert!

Time for gratuitous math:
P – our final desired color
T – Texture values
filt() – Filtering function (usually tex2D())
illum() – Lighting function (lit() or other shader code)
For simple color results,

P = filt(T)
is what we want
For complex, lit pixels,

P = filt(illum(T))
is what we want, but

P = illum(filt(T))
is what we get from bump/normal mapping
Fortunately, in many cases the error is small enough that games
(and even movies) have been getting away with it. So far.

©2005 NVIDIA Corporation. All rights reserved.

“Toksvig” Normal Maps

Michael Toksvig of NVIDIA did the
math for solving filt(illum(T)) for
Phong so that the pre-calculated
results can be placed directly into a
texture map
Result: better-quality bump/normal
mapping with good performace
Cost: you need to choose a
specific, fixed phong exponent
(“specular power”) as part of the
build process (artists can choose
using a non-Toksvig shader, then
switch for the final art assets)
FX Composer example available
White Paper:
http://developer.nvidia.com/object/
mipmapping_normal_maps.html

©2005 NVIDIA Corporation. All rights reserved.

Normal Map Frequency

Another reason we sometimes don’t notice bump-map
aliasing is that normal maps are blurrier than color maps
They have lower frequency – less data per texel
Making normal maps from height maps is a blurring
process

Depth Map Normal Map Red normal channel

©2005 NVIDIA Corporation. All rights reserved.

PhotoShop NormalMap Filter

http://developer.nvidia.com/object/photoshop_dds_plugins.html

Filters->nvTools->NormalMapFilter…

http://developer.nvidia.com/object/photoshop_dds_plugins.html

©2005 NVIDIA Corporation. All rights reserved.

Choices in Bump Conversion

Gray→Normals→Mips - Wrong
This is the “naïve” method – often good enough but not optimal
When you scale down MIPs that are already turned into normal
maps, you are scaling-down the size of the normals filter –
small sizes will smudge and sparkle

Gray→Mips→Normals - Right
This is the method used by Mipster and by the DDS plugin
when saving normal maps, and is usually preferred
Normals filter will be the same size for all screen sizes, and
mid-workflow sharpening can be applied to the grayscale MIPs
to keep them looking crisp

The Normals-Map Filter is good for previewing and has
one important feature that I especially like:

©2005 NVIDIA Corporation. All rights reserved.

Normal Map Preview

Key to getting
a result that
looks good for
your data
You can bring
in a matching
RGB texture
too
Use
“animating
light”

©2005 NVIDIA Corporation. All rights reserved.

Parallax and Displacement Mapping

Another shortcoming of
bump/normal mapping is
the lack of perspective
changes for large bumps
Parallax mapping, Relief
Mapping, and “displace”
mapping can help solve
these problems
None are “real”
displacement – note the
straight-line edges in the
example pic
Both need to have a
normal map and a valid
height map

©2005 NVIDIA Corporation. All rights reserved.

Painting BRDFs

“BRDF” means describing the way a particular
material reacts to light as a math function –
complex functions can be reduced to
combinations of textures
MIP mapping on BRDF textures can help
suppress aliasing even while making complex
BRDFs run really fast

+ =

©2005 NVIDIA Corporation. All rights reserved.

Painting BRDFs

Viewing the results on a live
shader is best – FX
Composer, CgFX Viewer,
etc. There are various
possible shaders, each with
their own input styles
You can start from a real-
world BRDF, and tweak
according to what you want!
The NVIDIA “Time Machine”
truck paint BRDF started
from Ford Motor Co
“Mystique” paint, but was
repainted to look more
“1950’s”

©2005 NVIDIA Corporation. All rights reserved.

Texturing with Unlit Textures

Getting rid of shadows
But not all?
If an object is black, it will never be lightened by lighting!
So be aware of the difference between truly black and
merely dark
If you know an area will truly be ALWAYS black, go
ahead and paint it that way – it will save trouble later
(e.g., the insides of a character’s nostrils probably need
never be lit)
Try to preview with a reasonable version of the shader
and lighting ASAP
Keep the .PSD files

©2005 NVIDIA Corporation. All rights reserved.

Common Problem: MIPS gone bad…

..or good?
Compare these two pots.
They were made with the SAME shader
One image is shown reduced in size to
match the other

©2005 NVIDIA Corporation. All rights reserved.

Here is the original large render

©2005 NVIDIA Corporation. All rights reserved.

What happened to the bumps?

MIP mapping from Photoshop has reduced the noisy
bump texture to a featureless gray value
At low MIPs, the bumpiness disappears

©2005 NVIDIA Corporation. All rights reserved.

Compare to Procedural MIPs

These MIP maps were created deliberately,
rather than as scaled copies of the top MIP

©2005 NVIDIA Corporation. All rights reserved.

Both Versions for Comparison

©2005 NVIDIA Corporation. All rights reserved.

Close-up of Lowest Levels

Same overall color, but the detailed MIP has
more contrast

©2005 NVIDIA Corporation. All rights reserved.

All three possibilities

Reduced MIPs, scaled-down large render, and noisy
minimum MIPs
TOO much contrast at the low MIPs can also mean
trouble…. Using the FADE option can help
Common game problem: paved surfaces

Running Demo

©2005 NVIDIA Corporation. All rights reserved.

How Big Does it Really Need to Be?

Sample images at
varying reso’s. How
big will players see
this model 90% of
the time? 100
pixels? 12? 500?
The problem of varying player screen sizes
(including handheld/SD/HD consoles)
Programmers: See Iain Cantley’s chapter on
dynamic MIP mgmt in GPU Gems 2 Makeup example courtesy

Tara Maginnis,
http://www.costumes.org

©2005 NVIDIA Corporation. All rights reserved.

Knowing What Resolution to Use

“uvDetective.fx”
in NVIDIA SDK
and FX
Composer
Black = selected
reso
Blue = could use
higher reso
Red, Green,
Yellow = lower-
res okay

Running Demo

©2005 NVIDIA Corporation. All rights reserved.

Dynamic Range Problems

Point light, e.g.:
Stars
Office buildings
Landing lights

http://epod.usra.edu/archive/images/na_lights_lrg.jpg

©2005 NVIDIA Corporation. All rights reserved.

Typical Problem: Starfields

Bright but tiny points often scale-down poorly

©2005 NVIDIA Corporation. All rights reserved.

Why Starfields Can Look Bad

Stars (and other points) are very tiny but brighter than a
“white” pixel
Filtering them after being clipped to 8-bit reduces their
genuine contribution
HDR corrects for this, but not always available
Using non-linear MIP filters can also help
Common example: Hi-res Sci-fi movies look rotten on
low-res TV, the stars disppear!

Original points Down-sampling Result

©2005 NVIDIA Corporation. All rights reserved.

Questions????

kbjorke@nvidia.com
http://developer.nvidia.com/

(“Poor Man’s Fresnel” – fade low mip
levels to green)

mailto:kbjorke@nvidia.com
http://developer.nvidia.com/

©2005 NVIDIA Corporation. All rights reserved.

	Let’s Get SmallUnderstanding MIP Mapping
	Understanding MIPs and Texturing
	What are MIP maps?
	Why Artists Should Care About MIPs
	Texture Mapping Basics
	Mapping a 2D texture to a triangle
	Mapping a 2D texture to a triangle
	Source Map
	We can look at the UVs directly
	Looking directly at the UV derivatives
	Texture Filtering
	GPU Texture Caching
	MIP Maps
	MIP Level Creation
	MIP bias
	Render-Time Filter Methods
	NVIDIA DDS Conversion Tool
	Making Automatic MIPs in Photoshop
	Creating MIP Maps in Photoshop
	MIP Map Filtering…
	Many Choices for Filtering
	Favored Filter Types
	Sharpening Filters
	Image Options…
	Fading MIP maps…
	Advanced Fading Options
	3D Texture Preview
	3D Preview Features
	Preview Options
	Formats: DXT Compression Schemes
	Special Bit Depth Choices
	Convert/Export Normal Map
	Plugin Config
	Hand-Tweaking MIP Levels
	Stage Makeup as “MIP LOD”
	“Mipping” in the Physical World
	Using “Mipster” to Create MIPs
	Saving Hand-Tweaked MIP Maps
	Rectangular Texture Atlases
	Irregular Texture Atlases
	Automated Irregular Charts
	Melody and MIP maps
	Charts are not MIP’d
	If Working Model is Monotonic….
	Making a chart atlas more mippable
	Hand-Painting Normal Maps
	Hand-Painting in FX Composer
	Why Normal Mapping Doesn’t Work
	Equation Alert!
	“Toksvig” Normal Maps
	Normal Map Frequency
	PhotoShop NormalMap Filter
	Choices in Bump Conversion
	Normal Map Preview
	Parallax and Displacement Mapping
	Painting BRDFs
	Painting BRDFs
	Texturing with Unlit Textures
	Common Problem: MIPS gone bad…
	Here is the original large render
	What happened to the bumps?
	Compare to Procedural MIPs
	Both Versions for Comparison
	Close-up of Lowest Levels
	All three possibilities
	How Big Does it Really Need to Be?
	Knowing What Resolution to Use
	Dynamic Range Problems
	Typical Problem: Starfields
	Why Starfields Can Look Bad
	Questions????
	

